Flow Regulators are usually mounted behind cultivator shanks for the subsurface application of liquid fertilizers and soil fumigants. They are also used for above-ground streaming applications.

How to order:
Specify orifice plate number. Example: CP4916-008

Typical Assembly

- **CP1322**
 - 1/4T Body
- **CP4916**
 - Strainer
 - Orifice Plate
- **CP4928**
 - 1/2” NPT (F) Outlet
- **CP1325**
 - Cap

Note: Always insert Orifice Plate with side marked with number facing the outlet.

Material: Stainless Steel

Tip Strainer Size Recommendation

<table>
<thead>
<tr>
<th>For Orifice Size</th>
<th>Use Mesh Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 and smaller</td>
<td>200</td>
</tr>
<tr>
<td>16-39</td>
<td>100</td>
</tr>
<tr>
<td>40-70</td>
<td>50</td>
</tr>
<tr>
<td>72 and larger</td>
<td>—</td>
</tr>
</tbody>
</table>

Flow Regulators

Note: Always double check your application rates. Tabulations are based on spraying water at 70°F (21°C).

Example: CP4916-008

For orifice size use mesh size: 9.

To determine the orifice plates you need, use the following equations:

\[
\text{GPM (Per Nozzle)} = \frac{\text{GPM} \times \text{MPH} \times W}{5,940}
\]

\[
\text{GPA} = \frac{5,940 \times \text{GPM (Per Nozzle)}}{\text{MPH} \times W}
\]

Tabulated flow rates are for spraying water into air at atmospheric pressure. If your application creates backpressure, or if spraying into a liquid, measure and calibrate to ensure proper application rates. For spraying solutions other than water, see page 141 for conversion factors.

FERTILIZER NOZZLES